Light-Responsive Porous Aromatic Frameworks: Generation of Photon Upconverted Emission and Modulation of Porosity by Bulk Photoisomerization †

Jacopo Perego 1,*, Silvia Bracco 1, Charl X. Bezuidenhout 1, Angiolina Comotti 1, Piero Sozzani 1

1 Department of Materials Science, University of Milano Bicocca, Milan, Italy
* Correspondence: jacopo.perego@unimib.it;
† Presented at Materials Chemistry and Physics (Materials Chemistry 2020) - International e-Conference

Received: 16.09.2020; Revised: 20.09.2020; Accepted: 24.09.2020; Published: 27.09.2020

Abstract: Porous aromatic frameworks (PAFs) were engineered to generate solid-state upconverting materials that emit higher energy photons under a suitable light stimulus [1]. Fluorescent PAFs were generated by the inclusion of diphenylanthracene moieties in a low-density 3D porous frameworks that maintained the optical properties of the emitting chromophores in the solid-state. Upon inclusion of a suitable sensitizer (a metallo-porphyrin) inside the nanometer-sized pores, the copolymer displayed sensitized photon upconversion with a quantum yield as high as 15%, a record value for solid-state materials. Moreover, it was possible to tether the sensitizer to the porous matrix through a stable covalent bond, generating self-standing upconverting nanoparticles that can be possibly applied in photovoltaics and bio-imaging.

PAFs can also be engineered as light-responsive materials. The co-polymerization of a photoswitch with tetraphenylmethane generated porous networks that provided the free volume for the photoisomerization of the overcrowded alkene [2]. Under UV light irradiation, the quantitative photoisomerization led to structural changes and modulated the CO2 adsorptive properties of the material. The process is reversible by irradiation or heating leading to a cyclable material.

Keywords: porous aromatic frameworks; photon upconversion; fluorescent nanoparticles; photoisomerization, molecular motors.

© 2020 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

References


Funding

This research received no external funding.

Acknowledgments

This research has no acknowledgment.

https://conferenceproceedings.international
Conflicts of Interest

The authors declare no conflict of interest.