Formulation and Characterization of Ursodeoxycholic Acid Nanosuspensions Based on Bottom-up Technology and Box Behnken Design †

Oriana Boscolo 1,2,3, Sabrina Flor 1,2, Leandro Salvo 1,2, Marcela Morefton 1,2,3, Cecilia Dobrecky 1,2, Silvia E. Lucangioli 1,2,3,*

1 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica
2 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentina
3 Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)
* Correspondence: slucangi@ffyb.uba.ar (S.E.L.);
† Presented at The Sixth International Meeting of Pharmaceutical Sciences (RICiFa), November 10-12, 2021, Córdoba, Argentina

Received: 26.04.2022; Revised: 4.05.2022; Accepted: 6.05.2022; Published: 8.05.2022

Abstract: Ursodeoxycholic acid (UDCA) is a low-water solubility therapeutic agent used to treat cholestatic hepatobiliary diseases. This work aimed to design and optimize UDCA nanosuspensions using the precipitation-ultrasonication method. A three-factor, three-level Box-Behnken design was used, such as stabilizer (X₁), amplitude (X₂), and sonication time (X₃). A cryoprotection effectiveness test was carried out to evaluate the efficiency of lyophilization. Particle size (PS), polydispersity index (PDI), and Z potential (ZP) were evaluated by DLS, and residual solvent content by GC-FID-MS. Physicochemical stability was evaluated at 25°C and 4°C at intervals of 7, 14, 30, and 60 days. The content of UDCA was determined by HPLC-UV. Values with a significant effect on the developed nanosuspension were 0.3% for stabilizer concentration, 5 min sonication time, and 50% for the suitable operative amplitude. The optimal UDCA nanosuspension showed a PS of 352.4 nm, a ZP of -4.30 mV, and a PDI of 0.11. For lyophilization, 10% maltose (cryoprotectant) and -80°C (freezing temperature) were selected, the absence of acetone was observed, and the nanosuspension presented adequate physicochemical stability throughout the study. The UDCA nanosuspension formulation may be an alternative to improve UDCA’s oral administration, dosage, and bioavailability.

Keywords: ursodeoxycholic acid; nanosuspensions; stability study; Box-Behnken design.

© 2022 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Funding

This research received no external funding.

Acknowledgments

The authors thank the University of Buenos Aires and CONICET for their financial support.

Conflicts of Interest

The authors declare no conflict of interest.

https://conferenceproceedings.international