Proceedings, Abstract Volume 6, Issue 1, 2024, 4

https://doi.org/10.33263/Proceedings61.004

Advances in Sampling and Detection Techniques for Microplastics in Aquatic Environments †

Mohammed Yaseen P.A. 1, Mahipal Singh Sankhla 1,2,*

- ¹ Department of Forensic Science (UIAHS), Chandigarh University, Mohali, Punjab, India; mohammedyaseen21231@gmail.com (M.Y.P.A.);
- ² University Centre for Research and Development (UCRD), Chandigarh University, Mohali, Punjab, India; mahipal.e14912@cumail.in (M.S.S.);
- * Correspondence: mahipal.e14912@cumail.in (M.S.S.);
- † Presented at 3rd National Conference on Environmental Toxicology: Impact on Human Health (Env-Tox 2024)

Received: 16.02.2024; Accepted: 20.03.2024; Published: 28.03.2024

Abstract: Microplastic pollution poses a significant threat to aquatic ecosystems and human health, prompting the need for robust sampling and detection methodologies. This abstract provides an overview of recent advances in the field of microplastic sampling and detection in water environments. Various sampling techniques, ranging from traditional filtration methods to innovative passive sampling approaches, are discussed in detail. These techniques enable the collection of water samples from diverse aquatic habitats, including oceans, rivers, lakes, and wastewater treatment plants, facilitating comprehensive assessments of microplastic contamination levels. Detection methods encompass visual identification using microscopy and advanced analytical techniques such as Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy. These analytical methods offer insights into the molecular composition and sources of microplastics present in water samples. Moreover, emerging technologies such as microplastic sensors and automated image analysis systems enhance the efficiency and accuracy of microplastic detection and monitoring. Understanding the distribution and dynamics of microplastics in aquatic environments is critical for developing effective mitigation strategies and regulatory policies to address this pressing environmental issue.

Keywords: microplastics; aquatic; detection; pollution.

© 2024 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Funding

None.

Acknowledgments

None.

Conflicts of Interest

The authors declare no conflict of interest.