Proceedings, Abstract Volume 6, Issue 1, 2024, 15

https://doi.org/10.33263/Proceedings61.015

Microplastics: Environmental Risks In Insect Ecosystem Leading to Adversity on Human Health †

Shahna Mohammed K.P. 1, Vaibhav Mishra 1,*

- Department of Forensic Science, (UIAHS), Chandigarh University, Mohali, Punjab, India; ushass.shahna@gmail.com (S.M.K.); vaibhavmishra674@gmail.com (V.M.);
- * Correspondence: vaibhavmishra674@gmail.com (V.M.);
- † Presented at 3rd National Conference on Environmental Toxicology: Impact on Human Health (Env-Tox 2024)

Received: 16.02.2024; Accepted: 20.03.2024; Published: 28.03.2024

Abstract: Plastic has become an inevitable part of our daily lives. Even though numerous plastic replacement projects have emerged recently, we can not eliminate the use of plastic in daily life. The leftover plastic debris gradually degrades into minute fragments with a diameter of less than 5 mm, known as microplastics. Environmental pollution of micro-plastics is known to be an anthropogenically mediated menace to the biosphere and is becoming a serious concern that is debatable globally. Microplastics can cause changes in both terrestrial and marine ecosystems. The detrimental effect of microplastics on terrestrial ecosystems led to variations in soil's physic-chemical and biological features, resulting in changes in nutrient cycling and a future climatic snare. Due to the ubiquitous nature of micro-plastics, insects will readily interact with micro-plastics via various pathways. The insects can take and transfer microplastics along food chains via ingestion and abidance. They are also responsible for the bio-fragmentation of microplastics and the generation of secondary pollutants. Microplastics can negatively affect the survival, reproduction, development, and gut microbiota of insects. The amount of oviposition was reduced in female flies exposed, suggesting that microplastics affected reproduction. Marine organisms can ingest microplastics. Furthermore, microplastics can also bring toxicological effects, such as oxidative damage, an increase in inflammation, a drop in immunity, a disorder in intestinal microorganisms, hepatic metabolic disorders, a decline in growth rate, and an increase in mortality, etc. So, in this paper, we deepen the understanding of environmental risks posed by microplastics in insect ecosystems, which lead to adversity in human health

Keywords: microplastics; insect; environment; human health; toxicity.

© 2024 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Funding

This research received no external funding.

Acknowledgments

None.

Conflicts of Interest

The authors declare no conflict of interest.