Proceedings, Abstract Volume 7, Issue 1, 2025, 27

https://doi.org/10.33263/Proceedings71.027

Aspects Regarding the Impact of Phytoparasitic Nematodes on $Rubus\ idaeus$ and $Fragaria \times Ananassa$ Crops in the Central Development Region of the Republic of Moldova

Gliga Olesea 1,*

- ¹ Institute of Zoology, Moldova State University
- * Correspondence: oleseagliga@gmail.com;

Received: 7.08.2025; Accepted: 21.09.2025; Published: 16.11.2025

Abstract: The berry sector, encompassing crops such as raspberry (Rubus idaeus), strawberry (Fragaria × ananassa), blackberry (Rubus fruticosus), etc., is undergoing dynamic development in the Republic of Moldova, showing significant potential for both the domestic market and exports. In the context of modern agriculture, characterized by intensification and rationalization, there is a parallel increase in the pressure exerted by diseases and pests on these crops. In recent years, changes in agricultural practices, the diversification of cultivars and introduction of new varieties, the uncontrolled import of planting material, along with the effects of climate change, have heightened the need for phytosanitary monitoring and testing of berry crops. Helminthological research conducted in the Central Development Region of the Republic of Moldova (Hancesti, Orhei, and Călărasi districts) on Rubus idaeus and Fragaria × ananassa plantations. Among the 12 plantations surveyed, associated nematodes belonging to the genera Pratylenchus (fam. Pratylenchidae), Rotylenchus (fam. Hoplolaimidae), Ditylenchus (fam. Anguinidae), and Xiphinema (fam. Longidoridae) were identified in 42% of the samples, with a low infestation level (<100 nematodes per 100 cm³ of soil). Nematodes of the genus Xiphinema are recognized as major biological vectors of economically significant plant viruses affecting agricultural crops. Additionally, symptoms of root system damage were observed in 35% of the plantations. These nematode species typically migrate and feed within the root cortex, causing significant tissue damage that inhibits the growth and development of raspberry and strawberry plants. Moreover, during feeding, the nematodes disrupt plant tissues, facilitating secondary infections by soilborne fungal and bacterial pathogens. The identified species are of notable economic and epidemiological importance. Nematode populations establish quickly in the soil, are influenced by climatic conditions, and can survive for extended periods. This underscores the need for preventive and control measures, such as annual monitoring of soil and root health; use of certified and pathogen-free planting material; implementation of integrated management practices, such as crop rotation, biofumigation, and biological treatments adapted to local environmental conditions.

Keywords: Berry Crops Moldova; Phytosanitary Monitoring; Plant-Parasitic Nematodes; Root Damage; Integrated Management.

© 2025 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The authors retain copyright of their work, and no permission is required from the authors or the publisher to reuse or distribute this article, as long as proper attribution is given to the original source.