Proceedings, Abstract Volume 7, Issue 1, 2025, 29

https://doi.org/10.33263/Proceedings71.029

Microbial Surfactants: A Biotechnological Solution for Soil and Water Remediation in the Danube Delta

Roxana-Mădălina Stoica 1,*, Mişu Moscovici 1

- National Institute for Chemical-Pharmaceutical Research and Development-ICCF, 112 Vitan Avenue, District 3, 31299, Bucharest, Romania
- * Correspondence: roxym_stoica@yahoo.com;

Received: 7.08.2025; Accepted: 21.09.2025; Published: 16.11.2025

Abstract: The use of biosurfactants in environmental biotechnology represents a promising direction in modern strategies for the remediation of contaminated ecosystems. Data from the literature show that these biocompounds - particularly rhamnolipids, lipopeptides, surfactins, and sophorolipids - are widely used in the bioremediation of contaminated environments, facilitating the solubilization of hydrophobic pollutants and accelerating their biodegradation through microbial activity. Microbial strains, such as Pseudomonas spp., Bacillus spp., and Candida spp., have been extensively studied for their ability to biosynthesize surfactants that can contribute to the development of sustainable bioremediation solutions [1]. The Danube Delta, with its remarkable biodiversity, is exposed to anthropogenic pressures from agricultural, aquaculture, transportation, and tourism activities [2]. In this context, microbial biosurfactants can become key components in ecological remediation approaches, contributing to the reduction of persistent pollutants and the conservation of natural habitats. The integration of these solutions, based on renewable biological processes, aligns with circular economy and sustainable development objectives, being essential for environmental protection in the Danube Delta. In conclusion, biosurfactants produced through microbial synthesis offer a potential for application in green environmental remediation technologies, with direct relevance to the conservation and sustainability of ecosystems in this region.

Keywords: biosurfactants; bioremediation; Danube Delta; circular economy.

© 2025 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).© 2025 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The authors retain copyright of their work, and no permission is required from the authors or the publisher to reuse or distribute this article, as long as proper attribution is given to the original source.

Acknowledgments

This work was supported by a grant from the Ministry of Research, Innovation and Digitization, CCCDI-UEFISCDI, project number PN-III-P2-2.1-PED-2021-3528, 731PED/2022, within PNCDI III, and was carried out with the support of the National Institute for Chemical-Pharmaceutical Research and Development-ICCF Bucharest, Romania.

References

1. Singh N.; Hu X.H, Kumar V.; Solanki M.K.; Kaushik A.; Singh V.K.; Singh, S.K.; Yadav, P.; Singh, R.P.; Bhardwaj, N.; Wang, Z.. Kumar, A. Microbially derived surfactants: an ecofriendly, innovative, and effective approach for managing environmental contaminants. *Front. Bioeng. Biotechnol.* **2024**, *12*, 1398210. doi: 10.3389/fbioe.2024.1398210.

2. Stoica, C.; Stanescu, E.; Paun, I.; Banciu, A.; Gheorghe, S.; Lucaciu, I.; Vasile, B.; Nita-Lazar, M. Danube Delta: monitoring and ecological status. A link between the past and the future. *Romanian Journal of Ecology & Environmental Chemistry*, **2019**, *1*, 72-82.