Proceedings, Abstract Volume 7, Issue 1, 2025, 33

https://doi.org/10.33263/Proceedings71.033

Bioactive Compounds Produced Using Agro-Industrial Waste Substrates: A Literature-Based Perspective on Sustainable Applications in the Bioeconomy

Roxana-Mădălina Stoica 1,*

- National Institute for Chemical-Pharmaceutical Research and Development-ICCF, 112 Vitan Avenue, District 3, 31299, Bucharest, Romania
- * Correspondence:roxym_stoica@yahoo.com;

Received: 7.08.2025; Accepted: 21.09.2025; Published: 16.11.2025

Abstract: Microbial biosurfactants represent a class of eco-friendly surface-active compounds with diverse industrial applications, including bioremediation, agriculture, pharmaceuticals, and cosmetics. Scientific literature highlights the increasing potential of biosurfactants as sustainable alternatives to synthetic surfactants, due to their biodegradability, low toxicity, and functional versatility. Recent studies demonstrate that various microbial strains - particularly bacteria and yeasts - can efficiently produce biosurfactants using low-cost agro-industrial wastes, such as used vegetable oils, molasses, or dairy by-products, thereby aligning production with circular economy principles. According to the literature, the results support the integration of biosurfactant bioprocesses into sustainable value chains that enhance microbial biodiversity, reduce environmental impact, and foster innovation in the bioeconomy [1]. The valorization of waste through microbial biotechnology represents a strategic direction for sustainable development and resource-efficient biomanufacturing.

Keywords: biosurfactants; agro-industrial wastes; sustainability; circular bioeconomy.

© 2025 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The authors retain copyright of their work, and no permission is required from the authors or the publisher to reuse or distribute this article, as long as proper attribution is given to the original source.

Acknowledgments

This work was supported by a grant from the Ministry of Research, Innovation and Digitization, CCCDI-UEFISCDI, project number PN-III-P2-2.1-PED-2021-3528, 731PED/2022, within PNCDI III, and was carried out with the support of the National Institute for Chemical-Pharmaceutical Research and Development-ICCF Bucharest, Romania.

References

1. Miao, Y.; To, M.H.; Siddiqui, M.A.; Wang, H.; Lodens, S.; Chopra, S.S.; Kaur, G.; Roelants, S.L.K.W.; Lin, C.S.K. Sustainable biosurfactant production from secondary feedstock-recent advances, process optimization and perspectives, *Front. Chem.* **2024**, *12*, 1327113. doi: 10.3389/fchem.2024.1327113