Proceedings, Abstract Volume 7, Issue 1, 2025, 37

https://doi.org/10.33263/Proceedings71.037

Importance of Halophytes in a Sustainable Bioeconomy

Nicoleta-Olimpia Andrei 1,2,*, Amalia Carmen Mitelut 1, Maria Paraschiv 2

- ¹ University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
- * Correspondence: nicoleta.andrei@incdsb.ro;

Received: 7.08.2025; Accepted: 21.09.2025; Published: 16.11.2025

Abstract: Halophytes are salt-tolerant plant species that flourish in environments characterized by high salinity. They are typically found in salt marshes, coastal dunes, and inland salt flats, where their root systems are regularly exposed to saline water. Utilizing the full properties and potential of halophytes supports the concept of nonconventional application, while contributing to achieving the goals of the circular economy strategy and paving the way to an integrated bioeconomy sector. This paper considers the development of halophytes as plants with multiple uses in related and/or varied fields and emphasizes the importance of creating market demand for the utilization of halophytes. The ecological significance of halophytes is underscored by their remarkable adaptability to diverse ecosystems, particularly in the context of climate change. Halophytic species contribute substantially to the preservation of coastal environments by stabilizing sand dunes, thereby mitigating erosion and preventing the intrusion of seawater into adjacent freshwater ecosystems. They have the potential to be used as a sustainable source of food, fuel, fodder, fiber, essential oils, and pharmaceuticals, among many other uses. Owing to their abilities to withstand high salinity and drought, accumulate high quantities of secondary metabolites, and require low maintenance during the growth stage, halophytes have enormous potential for land reclamation, improving soil fertility, and producing feedstock, which can help mitigate the negative effects of global climate change. Among multiple environmental benefits of halophytes, this paper features the phytoremediation of salt-affected soils, soil improvement, carbon sequestration, and biodiversity conservation. By considering these factors and adopting sustainable management practices, halophytes can be a valuable tool for restoring degraded saline lands, enhancing food security, and promoting a more sustainable agricultural system.

Keywords: halophytes; climate change; salinity; bioresources; circular bioeconomy.

© 2025 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The authors retain copyright of their work, and no permission is required from the authors or the publisher to reuse or distribute this article, as long as proper attribution is given to the original source.

Acknowledgments

This work was carried out with the support of the Ministry of Research, Innovation, and Digitization and financed from the Core Program (project 7N/23-02-0101/2023).